Grind75 Notes
  • README
  • week-1
    • Two Sum
    • Valid Parentheses
    • Merge Two Sorted Lists
    • Best Time to Buy and Sell Stock
    • Valid Palindrome
    • Invert Binary Tree
    • Valid Anagram
    • Binary Search
    • Flood Fill
    • Lowest Common Ancestor of a Binary Search Tree
    • Balanced Binary Tree
    • Linked List Cycle
    • Implement Queue using Stacks
  • week-2
    • First Bad Version
    • Ransom Note
    • Climbing Stairs
    • Longest Palindrome
    • Reverse Linked List
    • Majority Element
    • Add Binary
    • Diameter of Binary Tree
    • Middle of the Linked List
    • Maximum Depth of Binary Tree
    • Contains Duplicate
    • Maximum Subarray
  • week-3
    • Insert Interval
    • 01 Matrix
    • K Closest Points to Origin
    • Longest Substring Without Repeating Characters
    • 3Sum
    • Binary Tree Level Order Traversal
    • Clone Graph
    • Evaluate Reverse Polish Notation
  • week-4
    • Course Schedule
    • Implement Trie (Prefix Tree)
    • Coin Change
    • Product of Array Except Self
    • Min Stack
    • Validate Binary Search Tree
    • Number of Islands
    • Rotting Oranges
  • week-5
    • Search in Rotated Sorted Array
    • Combination Sum
    • Permutations
    • Merge Intervals
    • Lowest Common Ancestor of a Binary Tree
    • Time Based Key-Value Store
    • Accounts Merge
    • Sort Colors
  • week-6
    • Word Break
    • Partition Equal Subset Sum
    • String to Integer (atoi)
    • Spiral Matrix
    • Subsets
    • Binary Tree Right Side View
    • Longest Palindromic Substring
    • Unique Paths
    • Construct Binary Tree from Preorder and Inorder Traversal
  • week-7
    • Container With Most Water
    • Letter Combinations of a Phone Number
    • Word Search
    • Find All Anagrams in a String
    • Minimum Height Trees
    • Task Scheduler
    • LRU Cache
  • week-8
    • Kth Smallest Element in a BST
    • Minimum Window Substring
    • Serialize and Deserialize Binary Tree
    • Trapping Rain Water
    • Find Median from Data Stream
    • Word Ladder
    • Basic Calculator
    • Maximum Profit in Job Scheduling
    • Merge k Sorted Lists
    • Largest Rectangle in Histogram
Powered by GitBook
On this page
  • Problem
  • Pseudocode
  • Solution
  • Time and Space Complexity
  1. week-8

Word Ladder

PreviousFind Median from Data StreamNextBasic Calculator

Last updated 2 years ago

Problem

A transformation sequence from word beginWord to word endWord using a dictionary wordList is a sequence of words beginWord -> s1 -> s2 -> ... -> sk such that:

  • Every adjacent pair of words differs by a single letter.

  • Every si for 1 <= i <= k is in wordList. Note that beginWord does not need to be in wordList.

  • sk == endWord

Given two words, beginWord and endWord, and a dictionary wordList, return the number of words in the shortest transformation sequence from beginWord to endWord, or 0 if no such sequence exists.

Example 1:

Input: beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log","cog"]
Output: 5
Explanation: One shortest transformation sequence is "hit" -> "hot" -> "dot" -> "dog" -> cog", which is 5 words long.

Example 2:

Input: beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log"]
Output: 0
Explanation: The endWord "cog" is not in wordList, therefore there is no valid transformation sequence.

Pseudocode

- initially tried to solve it as a graph question
- still don't know understand solution

Solution

// No idea how this works lol
var ladderLength = function (begin, end, wordList) {
  let set = new Set();
  for (let val of wordList) {
    if (val !== begin) set.add(val);
  }
  if (!set.has(end)) return 0;
  let depth = 0;
  let queue = [begin];
  let size = queue.length;
  let a = "a".charCodeAt(0);
  while (queue.length > 0) {
    depth++;
    while (size > 0) {
      let str = queue.shift();
      for (let i = 0; i < str.length; i++) {
        for (let j = 0; j < 26; j++) {
          let search =
            str.slice(0, i) + String.fromCharCode(a + j) + str.slice(i + 1);
          if (search === str) continue;
          if (search === end) return depth + 1;
          if (set.has(search)) {
            queue.push(search);
            set.delete(search);
          }
        }
      }
      size--;
    }
    size = queue.length;
  }

  return 0;
};
//hit

Time and Space Complexity

Time

  • What did the code do

  • Total -

Space

  • What did the code do

  • Total -

Loading...LeetCode
Logo