Grind75 Notes
  • README
  • week-1
    • Two Sum
    • Valid Parentheses
    • Merge Two Sorted Lists
    • Best Time to Buy and Sell Stock
    • Valid Palindrome
    • Invert Binary Tree
    • Valid Anagram
    • Binary Search
    • Flood Fill
    • Lowest Common Ancestor of a Binary Search Tree
    • Balanced Binary Tree
    • Linked List Cycle
    • Implement Queue using Stacks
  • week-2
    • First Bad Version
    • Ransom Note
    • Climbing Stairs
    • Longest Palindrome
    • Reverse Linked List
    • Majority Element
    • Add Binary
    • Diameter of Binary Tree
    • Middle of the Linked List
    • Maximum Depth of Binary Tree
    • Contains Duplicate
    • Maximum Subarray
  • week-3
    • Insert Interval
    • 01 Matrix
    • K Closest Points to Origin
    • Longest Substring Without Repeating Characters
    • 3Sum
    • Binary Tree Level Order Traversal
    • Clone Graph
    • Evaluate Reverse Polish Notation
  • week-4
    • Course Schedule
    • Implement Trie (Prefix Tree)
    • Coin Change
    • Product of Array Except Self
    • Min Stack
    • Validate Binary Search Tree
    • Number of Islands
    • Rotting Oranges
  • week-5
    • Search in Rotated Sorted Array
    • Combination Sum
    • Permutations
    • Merge Intervals
    • Lowest Common Ancestor of a Binary Tree
    • Time Based Key-Value Store
    • Accounts Merge
    • Sort Colors
  • week-6
    • Word Break
    • Partition Equal Subset Sum
    • String to Integer (atoi)
    • Spiral Matrix
    • Subsets
    • Binary Tree Right Side View
    • Longest Palindromic Substring
    • Unique Paths
    • Construct Binary Tree from Preorder and Inorder Traversal
  • week-7
    • Container With Most Water
    • Letter Combinations of a Phone Number
    • Word Search
    • Find All Anagrams in a String
    • Minimum Height Trees
    • Task Scheduler
    • LRU Cache
  • week-8
    • Kth Smallest Element in a BST
    • Minimum Window Substring
    • Serialize and Deserialize Binary Tree
    • Trapping Rain Water
    • Find Median from Data Stream
    • Word Ladder
    • Basic Calculator
    • Maximum Profit in Job Scheduling
    • Merge k Sorted Lists
    • Largest Rectangle in Histogram
Powered by GitBook
On this page
  • Problem
  • Pseudocode
  • Solution
  • Time and Space Complexity
  1. week-3

Evaluate Reverse Polish Notation

PreviousClone GraphNextweek-4

Last updated 2 years ago

Problem

Evaluate the value of an arithmetic expression in .

Valid operators are +, -, *, and /. Each operand may be an integer or another expression.

Note that division between two integers should truncate toward zero.

It is guaranteed that the given RPN expression is always valid. That means the expression would always evaluate to a result, and there will not be any division by zero operation.

Example 1:

Input: tokens = ["2","1","+","3","*"]
Output: 9
Explanation: ((2 + 1) * 3) = 9

Example 2:

Input: tokens = ["4","13","5","/","+"]
Output: 6
Explanation: (4 + (13 / 5)) = 6

Example 3:

Input: tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"]
Output: 22
Explanation:
 ((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22

Pseudocode

- first thing is to understand how RPN works
    - takes in an operation
    - then takes following two values
    - perform operation
    - return result
- use a stack to store values until operand is encountered
- use a map with operand as a key and associated operation as a function

Solution

// from solutions
// https://leetcode.com/problems/evaluate-reverse-polish-notation/solutions/486566/javascript-stack-solution/
// using stack to parse out numbers, when an operand is encountered, pop off two values from the stack and execute the function assigned in the object
// after performing the operation, the value is pushed back into the stack and repeated until the loop ends
function evalRPN(tokens) {
  const stack = [];
  const ops = {
    "+": (a, b) => a + b,
    "-": (a, b) => a - b,
    "*": (a, b) => a * b,
    "/": (a, b) => (a / b >= 0 ? Math.floor(a / b) : Math.ceil(a / b)),
  };

  for (const el of tokens) {
    if (ops[el]) {
      const secondVal = stack.pop();
      const firstVal = stack.pop();
      const operation = ops[el](firstVal, secondVal);
      stack.push(operation);
    } else {
      stack.push(Number(el));
    }
  }

  return stack.pop();
}

Time and Space Complexity

Time

  • What did the code do

  • Total -

Space

  • What did the code do

  • Total -

Reverse Polish Notation
Loading...LeetCode
Logo