Grind75 Notes
  • README
  • week-1
    • Two Sum
    • Valid Parentheses
    • Merge Two Sorted Lists
    • Best Time to Buy and Sell Stock
    • Valid Palindrome
    • Invert Binary Tree
    • Valid Anagram
    • Binary Search
    • Flood Fill
    • Lowest Common Ancestor of a Binary Search Tree
    • Balanced Binary Tree
    • Linked List Cycle
    • Implement Queue using Stacks
  • week-2
    • First Bad Version
    • Ransom Note
    • Climbing Stairs
    • Longest Palindrome
    • Reverse Linked List
    • Majority Element
    • Add Binary
    • Diameter of Binary Tree
    • Middle of the Linked List
    • Maximum Depth of Binary Tree
    • Contains Duplicate
    • Maximum Subarray
  • week-3
    • Insert Interval
    • 01 Matrix
    • K Closest Points to Origin
    • Longest Substring Without Repeating Characters
    • 3Sum
    • Binary Tree Level Order Traversal
    • Clone Graph
    • Evaluate Reverse Polish Notation
  • week-4
    • Course Schedule
    • Implement Trie (Prefix Tree)
    • Coin Change
    • Product of Array Except Self
    • Min Stack
    • Validate Binary Search Tree
    • Number of Islands
    • Rotting Oranges
  • week-5
    • Search in Rotated Sorted Array
    • Combination Sum
    • Permutations
    • Merge Intervals
    • Lowest Common Ancestor of a Binary Tree
    • Time Based Key-Value Store
    • Accounts Merge
    • Sort Colors
  • week-6
    • Word Break
    • Partition Equal Subset Sum
    • String to Integer (atoi)
    • Spiral Matrix
    • Subsets
    • Binary Tree Right Side View
    • Longest Palindromic Substring
    • Unique Paths
    • Construct Binary Tree from Preorder and Inorder Traversal
  • week-7
    • Container With Most Water
    • Letter Combinations of a Phone Number
    • Word Search
    • Find All Anagrams in a String
    • Minimum Height Trees
    • Task Scheduler
    • LRU Cache
  • week-8
    • Kth Smallest Element in a BST
    • Minimum Window Substring
    • Serialize and Deserialize Binary Tree
    • Trapping Rain Water
    • Find Median from Data Stream
    • Word Ladder
    • Basic Calculator
    • Maximum Profit in Job Scheduling
    • Merge k Sorted Lists
    • Largest Rectangle in Histogram
Powered by GitBook
On this page
  • Problem
  • Pseudocode
  • Solution
  • Time and Space Complexity
  1. week-8

Trapping Rain Water

PreviousSerialize and Deserialize Binary TreeNextFind Median from Data Stream

Last updated 2 years ago

Problem

Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it can trap after raining.

Example 1:

Input: height = [0,1,0,2,1,0,1,3,2,1,2,1]
Output: 6
Explanation:
The above elevation map (black section) is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped.

Example 2:

Input: height = [4,2,0,3,2,5]
Output: 9

Pseudocode

- dp
    - instead of finding each and every dip (local minima)
    - use subtractive approach

Solution

var trap = function (height) {
  let landArea = 0;
  let maxFromLeft = 0;
  let maxAreaFromLeft = 0;

  for (let h of height) {
    landArea += h;
    maxFromLeft = Math.max(maxFromLeft, h);
    maxAreaFromLeft += maxFromLeft;
  }

  let maxFromRight = 0;
  let maxAreaFromRight = 0;

  for (let i = height.length - 1; i >= 0; i--) {
    maxFromRight = Math.max(maxFromRight, height[i]);
    maxAreaFromRight += maxFromRight;
  }

  const boundingArea = height.length * maxFromLeft;
  const leftVoid = boundingArea - maxAreaFromLeft;
  const rightVoid = boundingArea - maxAreaFromRight;
  return boundingArea - leftVoid - rightVoid - landArea;
};

Time and Space Complexity

Time

  • What did the code do

  • Total -

Space

  • What did the code do

  • Total -

Loading...LeetCode
Logo