Given a binary search tree (BST), find the lowest common ancestor (LCA) node of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”
Example 1:
Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
Output: 6
Explanation: The LCA of nodes 2 and 8 is 6.
Example 2:
Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
Output: 2
Explanation: The LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
Example 3:
Input: root = [2,1], p = 2, q = 1
Output: 2
Pseudocode
use unique property of BST
- values on the left is always smaller than parent node
- values on the right is always larger than parent node
two types of expected results
- return parent node, with both values are child
- return node that is equals to p or q, and either p or q as a child
traverse BST using dfs
- if p & q are both larger than current node value - recurse over right node
- if q & q are both smaller than current node value - recurse over left node
- return node
Solution
var lowestCommonAncestor = function (root, p, q) {
function walk(node, p, q) {
if (!node) {
return null;
}
// pre
// recurse
// values are on the right
if (p.val > node.val && q.val > node.val) {
return walk(node.right, p, q);
}
// values are on the right
if (p.val < node.val && q.val < node.val) {
return walk(node.left, p, q);
}
// post
// values are on both right and left, i.e this is the common ancestor
return node;
}
return walk(root, p, q);
};
// naive approach without utilizing properties of a BST
var lowestCommonAncestor = function(root, p, q) {
let commonAncestor = root
function findingPQ (node, p, q) {
if(!node) {
return
}
// pre
if(node.val === p.val) {
let leftFindOther = findOther(node.left, q.val) ? true : false
let rightFindOther = findOther(node.right, q.val) ? true : false
if (leftFindOther || rightFindOther) {
commonAncestor = node
foundBoth = true
return
} else {
return true
}
}
if(node.val === q.val) {
let leftFindOther = findOther(node.left, p.val) ? true : false
let rightFindOther = findOther(node.right, p.val) ? true : false
if (leftFindOther || rightFindOther) {
commonAncestor = node
foundBoth = true
return
} else {
return true
}
}
// recurse
let findOneLeft = findingPQ(node.left, p, q) ? true : false;
let findOneRight = findingPQ(node.right, p, q) ? true : false;
// post
if(findOneLeft && findOneRight) {
commonAncestor = node
foundBoth = true
}
if(findOneLeft) {
return true
}
if(findOneRight) {
return true
}
return false
}
function findOther(node, x) {
if(!node) {
return
}
// pre
if(node.val === x) {
return true
}
// recurse
let findLeft = findOther(node.left, x) ? true : false
let findRight = findOther(node.right, x) ? true : false
// post
if(findLeft || findRight) {
return true
}
return false
}
findingPQ(root, p, q)
return commonAncestor
};
Time and Space Complexity
Time
Finding values in a binary search tree is dependent on tree height O(height)
Total - O(h)
Space
space required by recursive function for finding a value in BST is also O(h) - it doesn't scale linearly with input size