Grind75 Notes
  • README
  • week-1
    • Two Sum
    • Valid Parentheses
    • Merge Two Sorted Lists
    • Best Time to Buy and Sell Stock
    • Valid Palindrome
    • Invert Binary Tree
    • Valid Anagram
    • Binary Search
    • Flood Fill
    • Lowest Common Ancestor of a Binary Search Tree
    • Balanced Binary Tree
    • Linked List Cycle
    • Implement Queue using Stacks
  • week-2
    • First Bad Version
    • Ransom Note
    • Climbing Stairs
    • Longest Palindrome
    • Reverse Linked List
    • Majority Element
    • Add Binary
    • Diameter of Binary Tree
    • Middle of the Linked List
    • Maximum Depth of Binary Tree
    • Contains Duplicate
    • Maximum Subarray
  • week-3
    • Insert Interval
    • 01 Matrix
    • K Closest Points to Origin
    • Longest Substring Without Repeating Characters
    • 3Sum
    • Binary Tree Level Order Traversal
    • Clone Graph
    • Evaluate Reverse Polish Notation
  • week-4
    • Course Schedule
    • Implement Trie (Prefix Tree)
    • Coin Change
    • Product of Array Except Self
    • Min Stack
    • Validate Binary Search Tree
    • Number of Islands
    • Rotting Oranges
  • week-5
    • Search in Rotated Sorted Array
    • Combination Sum
    • Permutations
    • Merge Intervals
    • Lowest Common Ancestor of a Binary Tree
    • Time Based Key-Value Store
    • Accounts Merge
    • Sort Colors
  • week-6
    • Word Break
    • Partition Equal Subset Sum
    • String to Integer (atoi)
    • Spiral Matrix
    • Subsets
    • Binary Tree Right Side View
    • Longest Palindromic Substring
    • Unique Paths
    • Construct Binary Tree from Preorder and Inorder Traversal
  • week-7
    • Container With Most Water
    • Letter Combinations of a Phone Number
    • Word Search
    • Find All Anagrams in a String
    • Minimum Height Trees
    • Task Scheduler
    • LRU Cache
  • week-8
    • Kth Smallest Element in a BST
    • Minimum Window Substring
    • Serialize and Deserialize Binary Tree
    • Trapping Rain Water
    • Find Median from Data Stream
    • Word Ladder
    • Basic Calculator
    • Maximum Profit in Job Scheduling
    • Merge k Sorted Lists
    • Largest Rectangle in Histogram
Powered by GitBook
On this page
  • Problem
  • Pseudocode
  • Solution
  • Time and Space Complexity
  1. week-7

Word Search

PreviousLetter Combinations of a Phone NumberNextFind All Anagrams in a String

Last updated 2 years ago

Problem

Given an m x n grid of characters board and a string word, return true if word exists in the grid.

The word can be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. The same letter cell may not be used more than once.

Example 1:

Input: board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCCED"
Output: true

Example 2:

Input: board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "SEE"
Output: true

Example 3:

Input: board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCB"
Output: false

Pseudocode

- dfs recursion to recurse over matrix
- seen array to prevent infinite loop

- is bfs possible?

Solution

var exist = function (board, word) {
  const seen = [];

  for (let i = 0; i < board.length; i++) {
    seen.push(new Array(board[0].length).fill(false));
  }

  function walk(x, y, idx) {
    if (x < 0 || y < 0 || x >= board.length || y >= board[0].length) {
      // console.log('out of bounds')
      return false;
    }

    // console.log(x, y, idx, word[idx])

    if (seen[x][y]) {
      // console.log('seen')
      return;
    }

    if (board[x][y] === word[idx]) {
      // console.log('found letter, incrementing')
      idx++;
    } else {
      // console.log('did not find letter')
      return;
    }

    if (idx === word.length) {
      return true;
    }

    // pre
    seen[x][y] = true;
    // recurse
    const down = walk(x + 1, y, idx);
    const right = walk(x, y + 1, idx);
    const up = walk(x - 1, y, idx);
    const left = walk(x, y - 1, idx);
    //post
    if (down || right || up || left) {
      // console.log('found path')
      return true;
    }

    // console.log('did not find path')
    seen[x][y] = false;
    return false;
  }
  // return walk(0, 0, 0)

  for (let m = 0; m < board.length; m++) {
    for (let n = 0; n < board[0].length; n++) {
      if (walk(m, n, 0)) {
        return true;
      }
    }
  }

  return false;
};

Time and Space Complexity

Time

  • What did the code do

  • Total -

Space

  • What did the code do

  • Total -

Loading...LeetCode
Logo