Given an m x n grid of characters board and a string word, return trueifwordexists in the grid.
The word can be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. The same letter cell may not be used more than once.
Example 1:
Input: board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCCED"
Output: true
Example 2:
Input: board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "SEE"
Output: true
Example 3:
Input: board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCB"
Output: false
Pseudocode
- dfs recursion to recurse over matrix
- seen array to prevent infinite loop
- is bfs possible?
Solution
var exist = function (board, word) {
const seen = [];
for (let i = 0; i < board.length; i++) {
seen.push(new Array(board[0].length).fill(false));
}
function walk(x, y, idx) {
if (x < 0 || y < 0 || x >= board.length || y >= board[0].length) {
// console.log('out of bounds')
return false;
}
// console.log(x, y, idx, word[idx])
if (seen[x][y]) {
// console.log('seen')
return;
}
if (board[x][y] === word[idx]) {
// console.log('found letter, incrementing')
idx++;
} else {
// console.log('did not find letter')
return;
}
if (idx === word.length) {
return true;
}
// pre
seen[x][y] = true;
// recurse
const down = walk(x + 1, y, idx);
const right = walk(x, y + 1, idx);
const up = walk(x - 1, y, idx);
const left = walk(x, y - 1, idx);
//post
if (down || right || up || left) {
// console.log('found path')
return true;
}
// console.log('did not find path')
seen[x][y] = false;
return false;
}
// return walk(0, 0, 0)
for (let m = 0; m < board.length; m++) {
for (let n = 0; n < board[0].length; n++) {
if (walk(m, n, 0)) {
return true;
}
}
}
return false;
};