Grind75 Notes
  • README
  • week-1
    • Two Sum
    • Valid Parentheses
    • Merge Two Sorted Lists
    • Best Time to Buy and Sell Stock
    • Valid Palindrome
    • Invert Binary Tree
    • Valid Anagram
    • Binary Search
    • Flood Fill
    • Lowest Common Ancestor of a Binary Search Tree
    • Balanced Binary Tree
    • Linked List Cycle
    • Implement Queue using Stacks
  • week-2
    • First Bad Version
    • Ransom Note
    • Climbing Stairs
    • Longest Palindrome
    • Reverse Linked List
    • Majority Element
    • Add Binary
    • Diameter of Binary Tree
    • Middle of the Linked List
    • Maximum Depth of Binary Tree
    • Contains Duplicate
    • Maximum Subarray
  • week-3
    • Insert Interval
    • 01 Matrix
    • K Closest Points to Origin
    • Longest Substring Without Repeating Characters
    • 3Sum
    • Binary Tree Level Order Traversal
    • Clone Graph
    • Evaluate Reverse Polish Notation
  • week-4
    • Course Schedule
    • Implement Trie (Prefix Tree)
    • Coin Change
    • Product of Array Except Self
    • Min Stack
    • Validate Binary Search Tree
    • Number of Islands
    • Rotting Oranges
  • week-5
    • Search in Rotated Sorted Array
    • Combination Sum
    • Permutations
    • Merge Intervals
    • Lowest Common Ancestor of a Binary Tree
    • Time Based Key-Value Store
    • Accounts Merge
    • Sort Colors
  • week-6
    • Word Break
    • Partition Equal Subset Sum
    • String to Integer (atoi)
    • Spiral Matrix
    • Subsets
    • Binary Tree Right Side View
    • Longest Palindromic Substring
    • Unique Paths
    • Construct Binary Tree from Preorder and Inorder Traversal
  • week-7
    • Container With Most Water
    • Letter Combinations of a Phone Number
    • Word Search
    • Find All Anagrams in a String
    • Minimum Height Trees
    • Task Scheduler
    • LRU Cache
  • week-8
    • Kth Smallest Element in a BST
    • Minimum Window Substring
    • Serialize and Deserialize Binary Tree
    • Trapping Rain Water
    • Find Median from Data Stream
    • Word Ladder
    • Basic Calculator
    • Maximum Profit in Job Scheduling
    • Merge k Sorted Lists
    • Largest Rectangle in Histogram
Powered by GitBook
On this page
  • Problem
  • Pseudocode
  • Solution
  • Time and Space Complexity
  1. week-6

String to Integer (atoi)

PreviousPartition Equal Subset SumNextSpiral Matrix

Last updated 2 years ago

Problem

Implement the myAtoi(string s) function, which converts a string to a 32-bit signed integer (similar to C/C++'s atoi function).

The algorithm for myAtoi(string s) is as follows:

  1. Read in and ignore any leading whitespace.

  2. Check if the next character (if not already at the end of the string) is '-' or '+'. Read this character in if it is either. This determines if the final result is negative or positive respectively. Assume the result is positive if neither is present.

  3. Read in next the characters until the next non-digit character or the end of the input is reached. The rest of the string is ignored.

  4. Convert these digits into an integer (i.e. "123" -> 123, "0032" -> 32). If no digits were read, then the integer is 0. Change the sign as necessary (from step 2).

  5. If the integer is out of the 32-bit signed integer range [-231, 231 - 1], then clamp the integer so that it remains in the range. Specifically, integers less than -231 should be clamped to -231, and integers greater than 231 - 1 should be clamped to 231 - 1.

  6. Return the integer as the final result.

Note:

  • Only the space character ' ' is considered a whitespace character.

  • Do not ignore any characters other than the leading whitespace or the rest of the string after the digits.

Example 1:

Input: s = "42"
Output: 42
Explanation:
 The underlined characters are what is read in, the caret is the current reader position.
Step 1: "42" (no characters read because there is no leading whitespace)
         ^
Step 2: "42" (no characters read because there is neither a '-' nor '+')
         ^
Step 3: "42" ("42" is read in)
           ^
The parsed integer is 42.
Since 42 is in the range [-231, 231 - 1], the final result is 42.

Example 2:

Input: s = "   -42"
Output: -42
Explanation:
Step 1: "   -42" (leading whitespace is read and ignored)
            ^
Step 2: "   -42" ('-' is read, so the result should be negative)
             ^
Step 3: "   -42" ("42" is read in)
               ^
The parsed integer is -42.
Since -42 is in the range [-231, 231 - 1], the final result is -42.

Example 3:

Input: s = "4193 with words"
Output: 4193
Explanation:
Step 1: "4193 with words" (no characters read because there is no leading whitespace)
         ^
Step 2: "4193 with words" (no characters read because there is neither a '-' nor '+')
         ^
Step 3: "4193 with words" ("4193" is read in; reading stops because the next character is a non-digit)
             ^
The parsed integer is 4193.
Since 4193 is in the range [-231, 231 - 1], the final result is 4193.

Pseudocode

- don't understand question

Solution

var myAtoi = function (str) {
  const MIN_VALUE = Math.pow(-2, 31);
  const MAX_VALUE = Math.pow(2, 31) - 1;
  const result = Number(str.trimLeft().match(/^[-\+]?\d+/));
  if (result < MIN_VALUE) return MIN_VALUE;
  if (result > MAX_VALUE) return MAX_VALUE;
  return result;
};

Time and Space Complexity

Time

  • What did the code do

  • Total -

Space

  • What did the code do

  • Total -

Loading...LeetCode
Logo